Synthesis and Reactions of [1,2,4]Triazolo[4,3-a]pyridinium-3-aminides and [1,2,4]Triazolo[4,3-a]pyrimidinium-3-aminides: Evaluation of the Scope and Mechanism of a New Type of Heterocyclic Rearrangement

Brian C. Bishop, ${ }^{a}$ Hugh Marley, ${ }^{a}$ Kevin J. McCullough, ${ }^{b}$ Peter N. Preston ${ }^{*, b}$ and
Stanley H. B. Wright ${ }^{\text {a }}$
${ }^{\text {a }}$ Merck Sharp and Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU. UK
${ }^{\text {b }}$ Department of Chemistry, Heriot-Watt University, Riccarton, Currie, Edinburgh EH14 4AS, UK

Abstract

1,2,4-Triazolo[4,3-a]pyridinium betaines $\mathbf{6 a}, \mathbf{b}$ have been prepared by treating 2-pyridyl-4-phenylthiosemicarbazides 4a, b with dicyclohexylcarbodimide, and related compounds 6c-f have been prepared through the intermediate S-methyl thiosemicarbazides 5c-f. Reaction of the pyrimidin-2-y thiosemicarbazide derivatives 8a-c with dicyclohexylcarbodiimide (DCC) gave the 1,2,4-triazolo-[4,3-a] pyrimidinium betaines 7a-c, but attempted thermal cyclization of the free bases derived from methiodides $\mathbf{8 j} \mathbf{j}$ o gave a series of enamines 11. The structure of one such enamine 11a was elucidated by degradation with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ which afforded a mixture of the amine 9 and the ketone 10. Treatment of the thiosemicarbazide 8d with dicyclohexylcarbodiimide gave the pyridinium betaine 14a, and a related compound 14b was prepared by reaction of the salt $\mathbf{1 2 b}$ with diazabicyclo[5.4.0]undec-7-ene (DBU). The crystal and molecular structure of the maleate salt of 14b was determined by X-ray crystallography. It was established that the betaine 14a could be converted into an enamine derivative 11a by heating it in toluene.

We have described the chemistry of $1,2,4$-triazolo[4,3-a]pyri-midinium-3-olates and -3-thiolates ${ }^{1}$ and of analogous compounds in the $1,2,4$-triazolo $[1,5-a]$ pyrimidine system. ${ }^{2.3}$ Most recently, in a preliminary note we have reported the synthesis of 1,2,4-triazolo[4,3-a]pyridinium-3-aminides and the unusual mode of dimerisation of certain analogous aminides in the [1,2,4]triazolo[4,3-a]pyrimidine ring system. ${ }^{4}$ In this paper we provide full details of our synthetic work in the aminide series, and describe the scope and mechanism of this new type of heterocyclic rearrangement.

1,2,4-Triazolo[4,3-a] pyridinium-3-aminides.-Two compounds in this series $2 a, b$ have been synthesised by the previously reported method outlined in Scheme $1 .{ }^{5}$ Since product yields were not quoted, ${ }^{5}$ it was decided to evaluate the scope of this type of reaction with a view to synthesising

Scheme 1 Reagents: i, TosCl

analogous triazolopyrimidinium betaines. Unfortunately, compound 2 a could never be synthesised through the salt 1 in greater than 20% yield by the optimised procedure described in the Experimental section, and alternative syntheses from

hydrazinopyridines were devised (see Scheme 2). Of the requisite 2-pyridylhydrazines 3a-f, the monosubstituted derivatives $3 a^{6}$ and $3 b^{7 a}$ had been previously reported, and $3 c$ was prepared in 85% yield from 2-bromo-4,6-dimethylpyridine and methylhydrazine. The remainder 3d-f were synthesised through alkylation of 2-benzylidenehydrazino-4,6-dimethylpyridine $\mathbf{3 g}$ and hydrolysis of the alkyl derivatives $\mathbf{3 h}-\mathbf{j}$ according to our recently described method for analogous pyrimidinyl hydrazines. ${ }^{1}$ The hydrazine derivatives $\mathbf{3 a - f}$ were treated with phenyl isothiocyanate in tetrahydrofuran to give a series of thiosemicarbazides $\mathbf{4 a}-\mathrm{f}$ in $76-95 \%$ yield. Treatment of two of the last mentioned compounds $\mathbf{4 a}$ and $\mathbf{4 b}$ with dicyclohexylcarbodiimide in dichloromethane gave the desired $1,2,4$-triazolo $[4,3-a]$ pyridinium- 3 -aminides $\mathbf{6 a}$ and $\mathbf{6 b}$, (Method A) in 55 and 61% yield respectively, but higher yields and easier purification were achieved by preparing the betaines $6 \mathbf{6}-\mathrm{f}$ through intermediate S-methyl thiosemicarbazides 5a-f. The

Table $1 \quad{ }^{1} \mathrm{H}$ NMR spectra $(\delta)^{a}$ of 1,2,4-triazolo[4,3-a]pyridinium-3-phenylaminides 6

Group compound	7-CH3	$5-\mathrm{CH}_{3}$	NCH_{2}	6-H	8-H	Others
6b			3.85s	6.87 m		$\begin{aligned} & \text { 6.72m (} \mathrm{ArH}), 7.11-7.23 \mathrm{~m}(8-\mathrm{H}, \mathrm{ArH}), 7.44-7.53 \mathrm{~m}(7-\mathrm{H}, \\ & \mathrm{Ar} \mathrm{H}), 8.46 \mathrm{~m}(5-\mathrm{H}) \end{aligned}$
60	2.21 d (0.9)	3.11 br s	3.59s	6.13br s	6.61 br s	$6.68-7.39 \mathrm{~m}$ (ArH$)$
$6{ }^{\text {d }}$	2.25 d (0.9)	3.23 br s	5.21 s	6.23 br s	6.61 brs	6.67-7.53m (ArH)
6	2.29 d (0.9)	3.20 br s	3.99t (7.2)	6.21 br s	6.68br s	$0.99 \mathrm{t}(7.3)\left(\mathrm{CH}_{3}\right), 1.96 \mathrm{sext}(7.4)\left(\mathrm{CH}_{2}\right), 6.6-7.4 \mathrm{~m}(\mathrm{ArH})$
69	2.29 d (0.9)	3.19 br s	3.97 t (7.1)	6.21 br s	6.67br s	$\begin{aligned} & 0.91 \mathrm{t}(6.9)\left(\mathrm{CH}_{3}\right), 1.26-1.43 \mathrm{~m}\left[\left(\mathrm{CH}_{2}\right)_{2}\right], 1.90 \text { quint }(7.1) \\ & \left(\mathrm{CH}_{2}\right), 6.61-7.46 \mathrm{~m}(\mathrm{ArH}) \end{aligned}$

${ }^{a}$ Recorded at 250 MHz in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution. Figures quoted (δ) are referred to SiMe $_{4}$. Coupling values $J \mathrm{~Hz}$ are in parentheses.

Scheme 2 Reagents: i, PhNCS ; ii, $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}=\mathrm{C}=\mathrm{NC}_{6} \mathrm{H}_{11}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, MeI, THF; iv, NaHCO_{3} aq., v, PhMe, reflux
latter were generated as red oils by treating the thiosemicarbazides $4 a-f$ with iodomethane and basifying the ensuing methiodides with aqueous sodium hydrogen carbonate. The oils were converted without rigorous purification into the orange-red betaines ($58-82 \%$) by heating them in toluene solution under reflux (Method B). Analytical data and spectral properties of the betaines were in accord with structure 6. A notable feature (see Table 1) in the ${ }^{1} \mathrm{H}$ NMR spectra of the betaines $6 \mathrm{c}-\mathrm{f}$ is the coupling ($J 0.9$) between the 7 -methyl substituent and $6-\mathrm{H}$; a coupling of comparable magnitude is also observed ${ }^{1}$ from $6-\mathrm{H}$ to a 5 -methyl substituent in analogous 1,2,4-triazolo[4,3-a]pyrimidinium-3-olates and -3-thiolates and in 5,7-dimethyl-3-oxo-2,3-dihydro-1,2,4-triazolo[4,3- a]pyrimidine.

1,2,4-Triazolo[4,3-a]pyrimidinium-3-aminides.-The above procedures (Methods A and B) were then applied to hydrazinopyrimidines, but analogous $1,2,4$-triazolo[4,3-a]pyri-midinium-3-aminides could be prepared only when an electronwithdrawing substituent was attached to the exocyclic nitrogen atom (viz 7a-c). Analytical and spectra data were in accord with structures ($7 \mathrm{a}-\mathrm{c}$) (see e.g. ${ }^{1} \mathrm{H}$ NMR data in Table 2). Thus, reaction of the thiosemicarbazides 8a-c with dicyclohexylcarbodiimide in acetone at room temperature gave the betaines $7 \mathrm{a}-\mathrm{c}$ ($>60 \%$ yield), the spectroscopic and analytical data for which were in accord with the proposed structures. In contrast, conversion of the thiosemicarbazides $\mathbf{8 d}-\mathbf{i}$ with methyl iodide

R
7 a $\quad \mathrm{CO}_{2} \mathrm{Et}$
b COPh
c $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
d $\mathrm{H} . \mathrm{HBr}$
e H
8 a $\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHCO}_{2} \mathrm{Et}$
$\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHCOPh}$
$\mathrm{N}(\mathrm{Me}) \mathrm{NHCSNHCO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
N(Me)NHCSNHPh
N(Me)NHCSNHMe
$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{NHCSNHPh}$
$\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}\right] \mathrm{NHCSNHPh}^{2}$
$\mathrm{N}\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right.$-p $]$ NHCSNHMe
$\mathrm{N}\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}-3,5\right] \mathrm{NHCSNHMe}$
$\mathrm{N}(\mathrm{Me}) \mathrm{NH}^{+}=\mathrm{C}(\mathrm{NHPh}) \mathrm{SMe}(\mathrm{I})$
$\mathrm{N}(\mathrm{Me}) \mathrm{NH}^{+}=\mathbf{C}(\mathbf{N H M e}) \mathrm{SMe}\left(\mathrm{I}^{\circ}\right)$
$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{NH}^{+}=\mathrm{C}(\mathrm{NHPh}) \mathrm{SMe}(\mathrm{I})$
$\mathrm{N}\left(\mathrm{C}_{5} \mathrm{H}_{11}\right) \mathrm{NH}^{+}=\mathrm{C}(\mathrm{NHPh}) \mathrm{SMe}(\mathrm{I})$
$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p\right) \mathrm{NH}^{+}=\mathrm{C}(\mathrm{NHMe}) \mathrm{SMe}(\mathrm{I})$
$\mathrm{N}\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}-3,5\right] \mathrm{NH}^{+}=\mathrm{C}(\mathrm{NHMe}) \mathrm{SMe}(\mathrm{I})$
$\mathrm{N}\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{p}\right] \mathrm{N}=\mathrm{CHPh}$
$\mathrm{N}\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}-3,5\right] \mathrm{N}=\mathrm{CHPh}$
$\mathrm{N}\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}-3,5\right] \mathrm{NH}_{2}$
$\mathrm{N}\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p\right] \mathrm{NH}_{2}$
into methiodides $\mathbf{8 j}-\mathbf{o}$ followed by application of Method B (see Scheme 2) gave colourless (from $8 \mathbf{j}$ and \mathbf{k}) or orange (from $8 \mathbf{n}$ and \mathbf{o}) crystalline compounds or yellow oils (from 81 and \mathbf{m}) with molecular weights (mass spectroscopy) twice the value that were expected for structures akin to 7. Although ${ }^{1} \mathrm{H}$ NMR spectroscopy (Table 3) provided insufficient information for unambiguous assignment of the dimer structures, a clue to the mechanism of dimerisation could be gleaned. Thus, the presence of only three resonances in the region expected for methyl groups ($\delta 1.99-2.38$) indicated that one such substituent was involved in the rearrangement. In addition, the presence of two $\mathrm{D}_{2} \mathrm{O}$-exchangeable protons was attributed to the presence of two NHR groups which were also evident from IR spectra ($v_{\text {max }} 3310-3405 \mathrm{~cm}^{-1}$).
The structure of the dimer from the methiodide $8 \mathbf{j}$ was elucidated by chemical degradation, and its stereostructure (see 11) determined X-ray crystallographically. ${ }^{4}$ Thus, acidic hydrolysis of the dimer with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ under reflux gave the amine $9(70 \%)$ and the ketone $10(90 \%)$ suggesting that the enamine 11a was representative of the dimer structure. ${ }^{1} \mathrm{H}$ NMR spectra of this 11a and related dimers 11b-f were in accord with the proposed structures with chemical shifts of the pyridyl substituents in close agreement with those observed in model compounds. In order to establish the possible intermediacy of betaines (see 7) in the dimerisation process, the preparation of two such compounds by cyclodesulfurisation of

Table $2{ }^{1} \mathrm{H}$ NMR spectra $(\delta)^{a}$ of 1,2,4-triazolo[4,3-a]pyrimidinium-3-aminides 7

Group compound	$5-\mathrm{CH}_{3}$	$7-\mathrm{CH}_{3}$	NCH_{3}	$6-\mathrm{H}$	Others
$7 \mathrm{7a}$	$3.03 \mathrm{~d}(1.0)$	2.63 s	4.10 s	$6.98 \mathrm{~d}(1.0)$	$1.28 \mathrm{t}(7.0)\left(\mathrm{CH}_{3}\right), 4.12 \mathrm{q}(7.0)\left(\mathrm{CH}_{2} \mathrm{O}\right)$
$\mathbf{7 b}^{\mathrm{b}}$	$3.10 \mathrm{~d}(1.0)$	2.53 s	3.96 s	$6.73 \mathrm{~d}(1.0)$	$7.37,8.01 \mathrm{~m}(\mathrm{ArH})$
$\mathbf{7 c}^{\mathrm{c}}$	$3.0 \mathrm{~d}(1.0)$	2.49 s	3.87 s	$6.50 \mathrm{~d}(1.0)$	$5.01 \mathrm{~s}\left(\mathrm{CH}_{2} \mathrm{O}\right), 7.26 \mathrm{~m}(\mathrm{ArH})$
$7 \mathrm{dd}^{d}$	$3.01 \mathrm{~d}(1.0)$	2.69 s	3.98 s	$7.17 \mathrm{~d}(1.0)$	

${ }^{a}$ Recorded at 250 MHz in $\mathrm{CD}_{3} \mathrm{OD}$ solution. Figures quoted (δ) are referred to SiMe_{4}. Coupling values J / Hz are shown in parentheses. ${ }^{b}$ In $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CD}_{3} \mathrm{OD}(1: 1)$. ${ }^{\mathrm{c}}$ In $\mathrm{CD}_{2} \mathrm{Cl}_{2} .{ }^{d} \mathrm{HBr}$ salt.

Table $3{ }^{1} \mathrm{H}$ NMR spectra ($\left.\delta\right)^{a}$ of 1-(4,6-dimethylpyrid-2-yl)-2-(1,2,4-triazol-3-yl)aminopropenes 11

Group compound	$\mathrm{CH}_{3} \mathrm{C}=$	$\mathrm{CH}=$	py 3-H	py 5-H	py $4-\mathrm{CH}_{3}$	py $6-\mathrm{CH}_{3}$	Others
$11 \mathbf{a}^{\text {b }}$	2.02s	6.36s	6.94s	6.78s	2.13s	2.25s	$\begin{aligned} & 3.47 \mathrm{~s}\left[\left(\mathrm{NCH}_{3}\right)_{2}\right], 6.78-7.40 \mathrm{~m}[\mathrm{ArH}], 9.17 \mathrm{br} \\ & \mathrm{~s}\left[(\mathrm{NH})_{2}\right] \end{aligned}$
$11 b^{c}$	1.99 d (1.0)	$6.21 \mathrm{br} \mathrm{d} \mathrm{(1.0)}$	6.89br s	6.74br s	2.16s	2.38 s	$\begin{aligned} & 3.36 \mathrm{~s}\left[\left(\mathrm{NCH}_{3}\right)_{2}\right], 2.68 \mathrm{~d}(5.2)\left[\left(\mathrm{NHCH}_{3}\right)_{2}\right], \\ & 4.93 \operatorname{brq}(5.3)\left[(\mathrm{NH})_{2}\right] \end{aligned}$
$11 c^{d}$	1.81 d (0.9)	$6.30 \mathrm{br} \mathrm{d} \mathrm{(0.9)}$	6.83s	6.69s	2.12s	2.39 s	$4.89 \mathrm{~s}\left[\left(\mathrm{NCH}_{2}\right)_{2}\right], 6.86-7.40 \mathrm{~m}[\mathrm{ArH}]$
$11{ }^{\text {e }}$	2.10 s	6.29s	7.02s	6.75 s	2.15 s	2.34s	$3.77 \mathrm{t}(7.4)\left[\left(\mathrm{NCH}_{2}\right)_{2}\right], 0.83 \mathrm{t}(6.6)\left[\left(\mathrm{CH}_{3}\right)_{2}\right]$, $1.19-1.35 \mathrm{~m}\left[\left(\mathrm{CH}_{2}\right)_{4}\right], 1.73$ quint (6.6), $\left[\left(\mathrm{CH}_{2}\right)_{2}\right], 6.76-7.42 \mathrm{~m}[\mathrm{ArH}]$
$11 e^{c}$	1.77s	6.05s	6.76s	6.62s	2.19s	2.34 s	$\begin{aligned} & 5.08 \mathrm{~s}\left[\left(\mathrm{NCH}_{2}\right)_{2}\right], 2.77 \mathrm{~d}(5.0)\left[\left(\mathrm{NHCH}_{3}\right)_{2}\right], \\ & 3.92 \mathrm{q}(5.5)\left[(\mathrm{NH})_{2}\right], 7.29-8.09 \mathrm{~m}[\mathrm{ArH}] \end{aligned}$
$11{ }^{\text {d }}$	1.93d (0.8)	5.97 d (0.8)	6.65s	6.42s	2.13s	2.15 s	$\begin{aligned} & 5.27 \mathrm{~s}\left[\left(\mathrm{NCH}_{2}\right)_{2}\right], 2.79 \mathrm{~d}(5.4)\left[\left(\mathrm{NHCH}_{3}\right)_{2}\right], \\ & 4.17 \mathrm{q}(5.4)\left[(\mathrm{NH})_{2}\right], 8.91 \mathrm{t}(2.0), 8.56 \mathrm{~d}(2.0) \\ & {[\mathrm{ArH}]} \end{aligned}$

${ }^{a}$ Recorded at 250 MHz . Figures quoted (δ) are referred to SiMe 4_{4}. Coupling values J / Hz are shown in parentheses. ${ }^{b} \operatorname{In}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} .{ }^{c} \operatorname{In}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} .{ }^{d} \operatorname{In}$ $\mathrm{CDCl}_{3} .{ }^{e} \operatorname{In} \mathrm{CD}_{3} \mathrm{OD}$.

9

10

	R^{1}	R^{2}
11a	Me	NHPh
b	Me	NHMe
c	$\mathrm{CH}_{2} \mathrm{Ph}$	NHPh
d	$\mathrm{C}_{5} \mathrm{H}_{11}$	NHPh
e	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{p}$	NHMe
f	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2-3,5}$	NHMe
g	Me	SMe

the thiosemicarbazides ($8 \mathbf{d}$ and 8 e) was attempted under mild conditions (DCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature). A red amorphous solid (55% yield) was obtained from $8 d$ but no reaction occurred with 8 e under comparable conditions. The spectral parameters of the red compound were inconsistent with a betaine structure (see 7): for example, the mass spectrum showed a molecular ion at $m / z 506$ consistent with a dimeric product, and the fragmentation pattern was similar to the colourless dimer formed from 8d described earlier. The ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of three CMe and two

NMe substituents. However, the non-equivalence of the two N-methyl and two N-phenyl resonances was in contrast to the equivalence of these signals in the spectrum of the dimer described above. Additional features were the presence of two $\mathrm{D}_{2} \mathrm{O}$-exchangeable protons at $\delta 7.32$ and 7.72 , and an abnormally deshielded aromatic proton at $\delta 8.92$; the presence of NH was confirmed from the IR spectrum ($v_{\text {max }} 3425 \mathrm{~cm}^{-1}$).

It was then established qualitatively that the red dimeric compound was converted into the colourless dimer 11a by heating it under reflux in toluene for a short period.
It was suspected that a key structural feature of the aminides (see 7) that could be involved in the dimerisation was the acidic nature of the methyl group at C-5 and our earlier proposal ${ }^{4}$ was that iminoallene intermediates (see 13) might mediate dimer formation (see 11). In this sense there is analogy in the basepromoted fragmentation and rearrangement of 1-methyl-1,2,3triazolium salts via 1,2,5-triazahexa-1,3,5-trienes. ${ }^{76}$ To check this hypothesis, 3-methylthio-1,5,7-trimethyl-1,2,4-triazolo[4,3a]pyrimidinium iodide $\mathbf{1 2 b}$ was treated with diazabicyclo[5.4.0] undec-7-ene (DBU) in tetrahydrofuran at room temperature. The resulting red compound isolated from the reaction by column chromatography, although not purified to analytical standard, was recognised from spectral data $\left({ }^{1} \mathrm{H}\right.$ NMR) as being related to the red 'dimer' from $8 \mathbf{d}$ described above. Reaction of red compound 14 b with maleic acid afforded an orange, crystalline salt whose structure was investigated by X-ray crystallography.

The fractional atomic coordinates obtained from the crystallographic analysis, and the subsequently derived interatomic distances and bond angles are compiled in Tables 4 and 5, respectively. The solid-state structure of the major ditriazolopyridinium cationic fragment is depicted in Fig. 1 together with the numbering system adopted in the structural study. Cursory inspection of the structure of the cation shows that it is consistent with structural formula 15 and, in turn, suggests that it is most likely to have been formed by specific protonation on the exocyclic nitrogen of the putative dimeric intermediate $\mathbf{1 4 b}$

Table 4 Refined fractional atomic coordinates of maleate salt of pyridinium betaine 14b with estimated standard deviations (esds) in parentheses

	x	y	z
N(1)	0.851 12(21)	0.50567(21)	$1.11274(21)$
C(1)	0.913 9(3)	0.4240 (3)	$1.0797(3)$
C(2)	1.0223 (3)	0.445 5(3)	1.190 5(3)
C(3)	1.0617 (3)	0.5371 (3)	1.327 3(3)
C(4)	0.994 4(3)	0.615 5(3)	$1.3537(3)$
C(5)	0.892 6(3)	0.6031 (3)	1.248 2(3)
C(6)	0.824 1(4)	0.6910 (3)	$1.2727(3)$
C(7)	1.173 9(4)	0.5501 (4)	1.4430 (3)
C(8)	0.863 3(3)	0.328 4(3)	0.935 4(3)
C(9)	0.880 6(3)	0.217 1(3)	0.881 3(3)
C(10)	0.945 9(3)	0.1654 (3)	0.961 6(3)
N(2)	0.8341 (3)	0.1350 (3)	$0.74109(25)$
$\mathrm{H}(2 \mathrm{~N})$	0.868(5)	0.077(5))	0.715(5)
C(11)	0.744 1(3)	0.1329 (3)	0.633 3(3)
N(3)	0.719 2(3)	0.0559 9(3)	0.502 5(3)
N(4)	0.6217 (3)	$0.0669(3)$	0.415 4(3)
C(12)	0.5961 (3)	0.1509 (3)	0.5027 (3)
N(5)	0.669 53(25)	0.197 00(24)	0.639 22(24)
C(13)	0.7710 (5)	-0.038 7(5)	0.4463 (4)
S(1)	0.473 32(9)	$0.20197(10)$)	$0.45076(10)$
C(14)	0.418 5(4)	0.115 5(5)	$0.2678(4)$
C(15)	0.746 68(25)	0.4959 (3)	1.003 4(3)
N(6)	0.615 70(22)	0.405 28(23)	0.935 62(24)
N(7)	$0.54196(24)$	0.4260 (3)	0.840 1(3)
C(16)	0.6389 9(3)	0.5310 (3)	0.862 0(3)
N(8)	0.767 64(24)	0.578 58(25)	0.962 4(3)
C(17)	0.5487 (3)	0.290 2(4)	0.939 9(4)
S(2)	$0.61508(11)$	0.610 61(12)	$0.77403(12)$
C(18)	0.4330 (4)	0.5170 (5)	0.660 0(5)
C(19)	0.054 9(5)	-0.055 9(5)	$0.7371(4)$
C(20)	$0.1989(4)$	0.0115 (4)	0.849 2(4)
C(21)	0.282 6(4)	-0.037 7(5)	0.880 9(4)
C(22)	0.257 4(7)	-0.1791(7)	$0.8157(6)$
$\mathrm{O}(1)$	0.010 6(4)	0.018 8(5)	$0.7207(4)$
$\mathrm{O}(2)$	-0.0115(3)	-0.1821(4)	0.664 5(4)
$\mathrm{O}(3)$	0.1363 (6)	-0.273 2(4)	0.719 9(5)
$\mathrm{O}(4)$	0.354 3(6)	-0.200 8(7)	0.857 6(7)

Fig. 1 Computer generated plot ${ }^{16}$ of the cation derived from the pyridinium betaine 14. For clarity, hydrogen atom labels have been generally omitted.
(see Scheme 3). As illustrated in the packing diagram (Fig. 2), the crystal structure of the orange salt derived from 14b consists of well separated, discrete ditriazolopyridinium cations and maleate mono-anions in a $1: 1$ ratio as required by the stoichiometry of the salt. Although there are no significantly short non-bonding contacts between the two ionic fragments

Table 5 Derived geometrical parameters for maleate salt from pyridinium betaine 14 b with esds in parentheses

(a) Bond distances (\AA)			
N(1)-C(1)	1.389(4)	$\mathrm{N}(4)-\mathrm{C}(12)$	$1.305(5)$
N(1)-C(5)	$1.379(4)$	$\mathrm{C}(12)-\mathrm{N}(5)$	$1.360(5)$
$\mathrm{N}(1)-\mathrm{C}(15)$	1.419(4)	$\mathrm{C}(12)-\mathrm{S}(1)$	1.748(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.382(5)$	S(1)-C(14)	1.790(5)
$\mathrm{C}(1)-\mathrm{C}(8)$	$1.429(5)$	C(15)-N(6)	1.321(4)
C(2)-C(3)	$1.378(5)$	$\mathrm{C}(15)-\mathrm{N}(8)$	1.309(4)
C(3)-C(4)	1.391(5)	$\mathrm{N}(6)-\mathrm{N}(7)$	1.372(4)
$\mathrm{C}(3)-\mathrm{C}(7)$	$1.494(6)$	$\mathrm{N}(6)-\mathrm{C}(17)$	1.454(5)
$\mathrm{C}(4) \mathrm{C}(5)$	$1.356(5)$	N(7)-(16)	1.319(5)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.490 (5)	$\mathrm{C}(16)-\mathrm{N}(8)$	$1.353(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.354(5)$	C(16)-S(2)	$1.739(4)$
C(9)-C(10)	$1.500(5)$	$\mathrm{S}(2) \mathrm{C}(18)$	1.785(6)
$\mathrm{C}(9)-\mathrm{N}(2)$	$1.372(5)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.480(7)$
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N})$	0.90(6)	$\mathrm{C}(19)-\mathrm{O}(1)$	$1.226(8)$
$\mathrm{N}(2)-\mathrm{C}(11)$	1.377(5)	$\mathrm{C}(19)-\mathrm{O}(2)$	1.257(7)
$\mathrm{C}(11)-\mathrm{N}(3)$	$1.336(5)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.315(7)$
$\mathrm{C}(11)-\mathrm{N}(5)$	$1.313(5)$	$\mathrm{C}(21)-\mathrm{C}(22)$	1.481(10)
$\mathrm{N}(3)-\mathrm{N}(4)$	$1.364(5)$	$\mathrm{C}(22)-\mathrm{O}(3)$	1.276(10)
$\mathrm{N}(3)-\mathrm{C}(13)$	1.461(6)	$\mathrm{C}(22)-\mathrm{O}(4)$	1.223(11)
(b) Bond angles $\left({ }^{\circ}\right.$)			
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	122.6(3)	$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(12)$	101.5(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(15)$	119.1(3)	$\mathrm{N}(4)-\mathrm{C}(12)-\mathrm{N}(5)$	116.4(3)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(15)$	118.1(3)	$\mathrm{N}(4)-\mathrm{C}(12)-\mathrm{S}(1)$	123.2(3)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	116.4(3)	$\mathrm{N}(5)-\mathrm{C}(12)-\mathrm{S}(1)$	120.5(3)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(8)$	117.4(3)	$\mathrm{C}(11)-\mathrm{N}(5)-\mathrm{C}(12)$	101.6(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	126.1(3)	$\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{C}(14)$	99.78(21)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122.4(3)	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{N}(6)$	123.4(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	118.3(3)	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{N}(8)$	124.1(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)$	120.1(3)	$\mathrm{N}(6)-\mathrm{C}(15)-\mathrm{N}(8)$	112.5(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)$	121.5(3)	$\mathrm{C}(15)-\mathrm{N}(6)-\mathrm{N}(7)$	108.5(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	121.2(3)	$\mathrm{C}(15)-\mathrm{N}(6)-\mathrm{C}(17)$	131.0(3)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	118.8(3)	$\mathrm{N}(7)-\mathrm{N}(6)-\mathrm{C}(17)$	120.2(3)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	118.6(3)	$\mathrm{N}(6)-\mathrm{N}(7)-\mathrm{C}(16)$	101.8(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	122.6(3)	$\mathrm{N}(7)-\mathrm{C}(16)-\mathrm{N}(8)$	115.5(3)
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	126.5(3)	$\mathrm{N}(7)-\mathrm{C}(16)-\mathrm{S}(2)$	126.0(3)
$\mathrm{H}(8)-\mathrm{C}(8)-\mathrm{C}(9)$	116.8(4)	$\mathrm{N}(8)-\mathrm{C}(16)-\mathrm{S}(2)$	118.5(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	125.9(3)	$\mathrm{C}(15)-\mathrm{N}(8)-\mathrm{C}(16)$	$101.6(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(2)$	122.0(3)	$\mathrm{C}(16)-\mathrm{S}(2)-\mathrm{C}(18)$	101.61(23)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(2)$	112.0(3)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{O}(1)$	115.6(5)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N})$	116.7(36)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{O}(2)$	119.6(5)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(11)$	128.2(3)	$\mathrm{O}(1)-\mathrm{C}(19)-\mathrm{O}(2)$	124.8(6)
$\mathrm{H}(2 \mathrm{~N})-\mathrm{N}(2)-\mathrm{C}(11)$	115.0(36)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	114.5(5)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{N}(3)$	$121.2(3)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	130.9(5)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{N}(5)$	127.7(3)	$\mathrm{H}(20)-\mathrm{C}(20)-\mathrm{C}(21)$	114.5(6)
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{N}(5)$	111.1(3)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	129.5(5)
$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{N}(4)$	109.5(3)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{O}(3)$	119.3(7)
$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{C}(13)$	129.9(4)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{O}(4)$	118.1(7)
$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(13)$	120.4(3)	$\mathrm{O}(3)-\mathrm{C}(22)-\mathrm{O}(4)$	122.6(8)

located in the same asymmetric unit of the cell, the carboxylate group oxygen $\mathrm{O}(1)$ appears to form a localised hydrogen bond with the amino hydrogen atom $\mathrm{H}\left(2 \mathrm{~N}^{\prime}\right)\left[\mathrm{O}(1) \cdots \mathrm{H}\left(2 \mathrm{~N}^{\prime}\right) 1.94\right.$ (6) $\AA]$ of an adjacent cation in the next unit cell related by translation along the direction of the a axis $[1+X, Y, Z]$.
The bond distances around each of the pyridinium and 1,2,4triazole rings are indicative of extensively delocalised π-systems. There is generally good agreement between corresponding geometrical parameters in both triazole rings A and B in 15, and also in other similarly substituted triazole derivatives. ${ }^{8}$ The three heterocyclic rings are planar (mean deviations from leastsquares planes: pyridinium ring $0.016 \AA$; triazole ring A $0.003 \AA$; triazole ring B $0.004 \AA$) and the atoms in the acyclic link between the pyridinium ring and triazole ring B are also essentially coplanar [mean deviation from plane through atoms $\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{N}(2) 0.005 \AA]$. Although triazole ring A is almost orthogonal to the central pyridinium ring (interplanar angle 81.04°), there should be a substantial degree of extended π conjugation between the pyridinium and triazole B rings since the ring atoms together with atoms $\mathrm{C}(8), \mathrm{C}(9)$ and $\mathrm{N}(2)$ all lie

Fig. 2 Crystal packing diagram ${ }^{17}$ for the maleate salt derived from pyridinium betaine 14
within a $0.25 \AA$ range of the least-squares plane through that portion of the structure. The eclipsed conformations adopted by the C-methylthio substituents of the triazole rings [$\mathrm{N}(4)-$ $\left.\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{C}(14)-2.7^{\circ} ; \mathrm{N}(7)-\mathrm{C}(16)-\mathrm{S}(2)-\mathrm{C}(18) 2.0^{\circ}\right]$ has been observed previously. ${ }^{8}$

The general structural features of the cation 15 , which results from protonation of $\mathbf{1 4 b}$, also provide direct evidence to support
the notion that a pyridinium betaine resonance structure (see 14B) may also be important in describing the ground states of ($14 \mathrm{a}, \mathrm{b}$) in which H_{B} is strongly deshielded ($\delta 8.92$ and 8.72 respectively) whereas H_{A} experiences an anisotropic effect from the electron-rich substituent at the adjacent 2-position ($\delta 6.00$ for H_{A} in 14b).

With the structures of both the initial red (see 14) and rearranged (see 16) dimers to hand, a pathway from the putative 1,2,4-triazolo [4,3-a]pyrimidinium intermediates (see 12a) or compound 12 b can be envisaged (Scheme 3). Thus, intramolecular proton transfer in the betaine 12a or intermolecular proton abstraction from the pyridinium salt $\mathbf{1 2 b}$ would give rise to a common type of dihydro-1,2,4-triazolo[4,3-a]pyrimidine intermediate which could form iminoallenic intermediates 13 via a cycloreversion process. Although little is known about the reactivity of such heterocumulenes, the iminoallenic functionality has been incorporated into azines, ${ }^{9}$ and the ensuing intramolecular reactions can be rationalised in terms of dipolar intermediates of significance in criss-cross cycloadditions. ${ }^{10}$ Of relevance to this discussion is the observation of electrocyclisation of N-phenyliminoallenes (see $13 ; N$ - Ph for N-triazolyl moiety) leading to quinolines. ${ }^{11}$ In the present work, it seems feasible that the iminoallenic intermediate could dimerise in a Diels-Alder fashion $(13 \rightarrow 14)$ with a subsequent $[1,5]$ sigmatropic migration of a triazole group, thus providing a stereospecific interconversion of the initially formed red (see 14) to rearranged dimers (see 16). To our knowledge, this type of ring fragmentation (see $12 \rightarrow 13$) has not been previously observed in reactions of methyl-substituted, condensed pyrimidinium compounds or in related heteroarenes. It is interesting to note from our earlier work ${ }^{1}$ that the salt $\mathbf{1 2 b}$ undergoes ring opening with methylamine as the nucleophile to give the triazole derivative 17b (see also ref. 12). In contrast, the present work indicates that reaction of the salt 12a with the hindered base DBU may follow a route through proton abstraction from the C-5 methyl substituent ($\mathbf{1 2 b} \rightarrow \mathbf{1 3 b}$). Assuming that aminides (see 7) are intermediates in dimer formation, the substituent

effects can be rationalised: an electron-withdrawing substituent on the exocyclic nitrogen reduces the nucleophilicity of the nitrogen atom, and aminides (see 7) can be isolated; in contrast, exocyclic N-alkyl or N-aryl substituents bear higher charge density on the nitrogen atom and facilitate intramolecular proton transfer leading to dimer formation (e.g. $8 \mathbf{j} \rightarrow[12 \mathrm{a}] \rightarrow$ $14 a \rightarrow 16 a$).

It was of interest to attempt the synthesis of a 5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidinium-3-aminide derivative with an exocyclic NH substituent 7 e with a view to evaluating its behaviour towards dimerisation. The hydrobromide salt 7d of the desired free base 7 e was prepared analytically pure in good yield by treating the benzyloxycarbonylaminide 7c with hydrogen bromide in acetic acid at room temperature. Unfortunately, when the hydrobromide 7d was basified at room temperature, either a complex mixture was obtained (using aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$), or a product 17a was isolated (using NH_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) which resulted from cleavage of the pyrimidinium ring (see the interconversion of $\mathbf{1 2 b} \rightarrow \mathbf{1 7 b}$ by methylamine). ${ }^{1}$

Summary--5,7-Dimethyl-1,2,4-triazolo[4,3-a]pyridinium betaines bearing an exocyclic 3-phenylaminide group 6a-f are stable heteroaromatic compounds but this is not the case for condensed pyrimidinium analogues [e.g. $7(\mathrm{R}=\mathrm{Ph})$]. A complicated skeletal rearrangement occurs in the latter series unless electron-withdrawing groups are present on the exocyclic aminide nitrogen atom. The present work suggests that a variety of novel heterocyclic compounds should be accessible from transient, condensed heteroaromatic betaines in which there is appropriate juxtaposition of a methyl- or benzylic hydrogen and a suitably substituted aminide function.

Experimental

M.p.s were determined on a Buchi $510 \mathrm{~m} . \mathrm{p}$. apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 781 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on Bruker WP-60 (60 MHz) or Bruker AM-250 (250 MHz) spectrometers with tetramethylsilane as internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were run on a Bruker AM-250 (250 MHz) spectrometer. Mass spectra were obtained using a VG-Micromass-16F spectrometer using a direct insertion probe. Merck Kieselgel 60 was used for column chromatography unless otherwise stated; for analytical TLC, pre-coated Merck Kieselgel 60 F 254 plates were used.

Reaction of Pyridine with N -Hydroxy- $\mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$-diphenylguanidine and Toluene-p-sulfonyl Chloride.-Toluene-p-sulfonyl chloride ($4.2 \mathrm{~g}, 22 \mathrm{mmol}$) was added in portions over 1.5 h to a stirred mixture of N-hydroxy- $N^{\prime}, N^{\prime \prime}$-diphenylguanidine (5.0 g , 22 mmol), dry pyridine ($6.75 \mathrm{~g}, 85 \mathrm{mmol}$) and toluene ($22 \mathrm{~cm}^{3}$) maintained at $5^{\circ} \mathrm{C}$. During the addition, the mixture developed a deep red colour which changed to black at the end of the addition period. The mixture was stirred at $5^{\circ} \mathrm{C}$ for 24 h and then decanted to afford a black tarry deposit. The tar was dissolved in hot ethanol ($100 \mathrm{~cm}^{3}$) to give the toluene- p sulfonate salt 1 la as an off-white solid, m.p. $228-229^{\circ} \mathrm{C}$ (lit., ${ }^{5}$ $228-229^{\circ} \mathrm{C}$). The salt was suspended in concentrated aqueous ammonium hydroxide ($25 \mathrm{~cm}^{3}$) and the mixture first stirred
vigorously and then extracted with chloroform ($2 \times 50 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was then recrystallised from ethanol to give 1-phenyl-1,2,4-triazolo[4,3-a]pyridinium3 -phenylaminide 2 a as orange-red plates ($1.25 \mathrm{~g}, 20 \%$), m.p. $203-205^{\circ} \mathrm{C}$ (lit., ${ }^{5} 204-205^{\circ} \mathrm{C}$). Detailed spectroscopic data for this compound 2 a are presented below (see under 6a).

Preparation of Hydrazine Derivatives 3.-4,6-Dimethyl-2-(1Methylhydrazino)pyridine 3c. A solution of 2-bromo-4,6-dimethylpyridine ($1.86 \mathrm{~g}, 10 \mathrm{mmol}$) and methylhydrazine (1.84 g , 40 mmol) in toluene ($30 \mathrm{~cm}^{3}$) was heated at reflux for 48 h . The mixture was cooled, washed with water ($20 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a brown oil. The oil was distilled in a Kugelrohr apparatus (oven temperature $55^{\circ} \mathrm{C}$, pressure 0.01 Torr) to give the title compound 3 c as a colourless liquid ($1.28 \mathrm{~g}, 85 \%$); $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3300(\mathrm{NH}), 3180(\mathrm{NH}), 1600$ and $1560 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $2.22\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $4.23\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.33(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H})$ and $6.49(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$; $m / z 151(50 \%)\left(\mathbf{M}^{+}\right), 136(32), 135(100), 108(15), 107(69), 106$ (43), 79 (17), 77 (16) and 28 (14).

2-Benzylidenehydrazino-4,6-dimethylpyridine $\mathbf{3 g}$. A stirred solution of 2-hydrazino-4,6-dimethylpyridine ($7.0 \mathrm{~g}, 51 \mathrm{mmol}$) in ethanol ($100 \mathrm{~cm}^{3}$) was treated with benzaldehyde $\left(5.2 \mathrm{~cm}^{3}, 51\right.$ mmol) at room temperature. An exothermic reaction ensued and the internal temperature rose to $30^{\circ} \mathrm{C}$. The mixture was allowed to cool to room temperature and then stirred for 30 min . The solvent was evaporated under reduced pressure and the residue crystallised from hexane to give the title compound $3 \mathrm{~g}(10.5 \mathrm{~g}, 91 \%)$, m.p. $107-109^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3280(\mathrm{NH})$, $1610,1300,1221,1167,1148,751$ and $690 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 2.29(\mathrm{~s}, 3$ $\mathrm{H}, 4-\mathrm{CH}_{3}$), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 6.50(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}, 3-$ $\mathrm{H}), 7.25-7.74(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$ and $9.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

General Method for the Preparation of N-Alkyl-N-(4,6-di-methyl-2-pyridyl)benzaldehyde Hydrazones $\mathbf{3 h}-\mathrm{i}$.-A solution of 2-benzylidenehydrazino-4,6-dimethylpyridine $\mathbf{3 g}(4.5 \mathrm{~g}, 20$ mmol) in tetrahydrofuran $\left(40 \mathrm{~cm}^{3}\right)$ was added dropwise over 15 min to a stirred suspension of sodium hydride (55% dispersion in oil; $0.77 \mathrm{~g}, 20 \mathrm{mmol}$) in tetrahydrofuran ($20 \mathrm{~cm}^{3}$) at room temperature. The resulting mixture was stirred for 10 min whereupon a solution of the alkyl halide (20 mmol) in tetrahydrofuran $\left(10 \mathrm{~cm}^{3}\right)$ was added. The mixture was heated at reflux for 1.5 h and then cooled to room temperature and diluted with water $\left(50 \mathrm{~cm}^{3}\right)$. The mixture was extracted with diethyl ether ($2 \times 50 \mathrm{~cm}^{3}$) and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered through a plug of silica gel. The filtrate was evaporated under reduced pressure and the crude product purified by crystallization. The following compounds were prepared.

Benzaldehyde benzyl (4,6-dimethyl-2-pyridyl)hydrazone 3h. Colourless needles ($5.25 \mathrm{~g}, 84 \%$), m.p. $120-121^{\circ} \mathrm{C}$ (EtOAc) (Found: C, 80.05; H,6.75; N, 13.4. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3}$ requires C, $80.0 ; \mathrm{H}$, $6.7 ; \mathrm{N}, 13.3 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1602,1555,1168,1145$ and 692 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.32\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 5.66(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 6.52(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H})$ and $7.10-7.71(\mathrm{~m}, 12 \mathrm{H}, 3-\mathrm{H}, \mathrm{N}=$ CHPh and ArH); m/z 315 (19\%) (M+ ${ }^{+}$), 266 (16), 264 (13), 238 (38), 224 (43), 211 (100), 203 (29), 107 (28), 106 (34) and 91 (39).

Benzaldehyde (4,6-dimethyl-2-pyridyl)propylhydrazone 3i. Colourless needles ($3.8 \mathrm{~g}, 72 \%$), m.p. $64-65^{\circ} \mathrm{C}$ [EtOAchexane]; analytical and spectroscopic data are given in Suppl. Pub. 56922 (11 pp.), Table 1.*

[^0]Benzaldehyde (4,6-Dimethyl-2-pyridyl)(pentyl)hydrazone 3j. Colourless needles ($4.4 \mathrm{~g}, 74 \%$), m.p. $48-49^{\circ} \mathrm{C}$ (EtOAc-hexane); analytical and spectral data are given in Suppl. Pub. 56922 (11 pp.), Table 1.*

General Method for the Preparation of 2-(1-Alkylhydrazino)-4,6-dimethylpyridines $\mathbf{3 d}-\mathbf{f}$.-A solution of the benzaldehyde alkyl (4,6-dimethyl-2-pyridyl)hydrazone $3 \mathrm{~h}-\mathrm{j}$ (12 mmol) in 2 mol dm ${ }^{-3}$ aqueous hydrochloric acid ($40 \mathrm{~cm}^{3}$) was heated at reflux for 6 h . Benzaldehyde was removed from the reaction mixture by co-distillation with water. The solution was cooled to room temperature and basified with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide. The resulting mixture was extracted with diethyl ether ($2 \times 50 \mathrm{~cm}^{3}$) and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to leave an oil. The oil was distilled in a Kugelrohr apparatus to give the pyridine derivatives $\mathbf{3 d} \mathbf{- f}$ as colourless oils. The following compounds were prepared.

2-(1-Benzylhydrazino)-4,6-dimethylpyridine 3d ($2.34 \mathrm{~g}, 86 \%$), b.p. (Kugelrohr) $150{ }^{\circ} \mathrm{C}$ at 1 Torr (Found: C, 74.0; H, 7.55; N, 18.5. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3}$ requires $\mathrm{C}, 74.0 ; \mathrm{H}, 7.55 ; \mathrm{N}, 18.5 \%$); $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3305(\mathrm{NH}), 3200(\mathrm{NH}), 1610$ and $1570 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 2.22 (s, $3 \mathrm{H}, 4-\mathrm{CH}_{3}$), $2.36\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 4.93(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), $6.35(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$ and $7.28(\mathrm{br} \mathrm{d} \mathrm{s}, 5 \mathrm{H}$, ArH).

4,6-Dimethyl-2-(1-propylhydrazino)pyridine $3 \mathrm{e}(1.83 \mathrm{~g}, 85 \%$), b.p. (Kugelrohr), $100^{\circ} \mathrm{C} / 0.5 \mathrm{Torr}$; analytical and spectral data are given in Suppl. Pub. 56922 (11 pp .),* Table 2.

4,6-Dimethyl-2-(1-pentylhydrazino)pyridine $3 \mathrm{f}(2.09 \mathrm{~g}, 84 \%)$, b.p. (Kugelrohr), $110^{\circ} \mathrm{C} / 0.3 \mathrm{Torr}$; analytical and spectral data are given in Suppl. Pub. 56922 (11 pp.),* Table 2.

General Method for the Preparation of Pyridylthiosemicarbazides $4 \mathrm{a}-\mathrm{j}$.-A mixture of the 2 -(1-alkylhydrazino) pyridine 3a-f (10 mmol) and phenyl isothiocyanate (10 mmol) in tetrahydrofuran ($50 \mathrm{~cm}^{3}$) was stirred at room temperature for 24 h . The resulting mixture was evaporated under reduced pressure and the crude product purified by crystallisation. The following compounds were prepared; analytical and spectra data for compounds $\mathbf{4 b - f}$ are given in Suppl. Pub. 56922 (11 pp.),* Tables 3 and 4.

1,4-Diphenyl-1-(2-pyridyl)thiosemicarbazide 4a. Colourless needles $\left(2.78 \mathrm{~g}, 85 \%\right.$), m.p. $178-180^{\circ} \mathrm{C}(\mathrm{EtOH})$ (Found: C, 67.3; $\mathrm{H}, 5.1 ; \mathrm{N}, 17.2 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}$ requires $\mathrm{C}, 67.5 ; \mathrm{H}, 5.0 ; \mathrm{N}, 17.5 \%$); $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3130(\mathrm{NH}), 1588,1315,1265,1200,740$ and 692; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 6.85-8.20(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}), 10.08(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}$) and $10.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N} H) ; m / z(\mathrm{CI}) 321(\mathrm{M}+1)^{+}$, 287 (6), 172 (5), 171 (43), 170 (3), 154 (5), 153 (56), 35 (65), 30 (2) and 28 (2).

1-Methyl-4-phenyl-1-(2-pyridyl)thiosemicarbazide 4b. Colourless needles ($2.25 \mathrm{~g}, 87 \%$), m.p. $169-171^{\circ} \mathrm{C}$ (EtOH).

1-(4,6-Dimethyl-2-pyridyl)-1-methyl-4-phenylthiosemicarbazide 4 c. Colourless needles ($2.49 \mathrm{~g}, 87 \%$), m.p. $147-148^{\circ} \mathrm{C}$ (EtOH-hexane).

1-Benzyl-1-(4,6-dimethyl-2-pyridyl)-4-phenylthiosemicarbazide 4d. Yellow needles ($3.44 \mathrm{~g}, 95 \%$), m.p. $128.5-129^{\circ} \mathrm{C}$ (EtOAc-hexane).

1-(4,6-Dimethyl-2-pyridyl)-4-phenyl-1-propylthiosemicarbazide 4e. Colourless plates ($2.98 \mathrm{~g}, 81 \%$), m.p. $139-140^{\circ} \mathrm{C}$ (MeOH).

1-(4,6-Dimethyl-2-pyridyl)-1-pentyl-4-phenylthiosemicarbazide 4 f . Colourless needles ($2.61 \mathrm{~g}, 76 \%$), m.p. $80-82{ }^{\circ} \mathrm{C}$ (MeOH).

[^1]Synthesis of 1,2,4-Triazolo[4,3-a]pyridinium-3-phenylaminides 6.-Method A (for 6a and 6b). Dicyclohexylcarbodiimide (5 mmol) was added to a stirred mixture of the 1 -substituted 4 -phenyl-1-(2-pyridyl)thiosemicarbazide ($\mathbf{4 a}$ or $\mathbf{4 b}$) (3.33 mmol) in dichloromethane ($20 \mathrm{~cm}^{3}$) at room temperature, and the resultant red solution was stirred for 72 h . The mixture was evaporated under reduced pressure and the crude product ($6 \mathbf{a}$, b) was purified by crystallisation from toluene.

Method B (for 6a-f). A solution of the 1-substituted 4-phenyl-1-(2-pyridyl)thiosemicarbazide 4a-f (5 mmol) and iodomethane (7.5 mmol) in tetrahydrofuran was stirred at room temperature for 48 h . The resulting yellow solution was partitioned between saturated aqueous sodium hydrogen carbonate ($30 \mathrm{~cm}^{3}$) and diethyl ether ($40 \mathrm{~cm}^{3}$) and the mixture was vigorously stirred for 10 min . The organic layer was separated, washed with water (30 cm^{3}), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the intermediate thioether (5 a-f) as a red oil. The oil was dissolved in toluene ($60 \mathrm{~cm}^{3}$) and the resultant wine-coloured solution heated at reflux for 5 h . The solution was concentrated by distillation and the concentrate was allowed to cool to room temperature and then stirred for 3 h . The precipitate was washed with toluene and then hexane and the crude product was purified by crystallisation. The following compounds were prepared [analytical and spectral data for compounds ($\mathbf{6 d}-\mathbf{f}$) are given in Suppl. Pub. 56922 (11 pp .), ${ }^{*}$ Tables 5 and 6].

1-Phenyl-1,2,4-triazolo[4,3-a pyridinium-3-phenylaminide 6 a. Orange-red plates (Method A, 55%; method B, 62\%), m.p. 203$200^{\circ} \mathrm{C}$ (from PhMe) [lit., $\left.{ }^{5} \quad 204-205^{\circ} \mathrm{C}\right] ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1610, 1579, 1550 and $1510 ; m / z 286$ (92) (M^{++}), 285 (44), 169 (78), 168 (49), 143 (5), 78 (9), 77 (17), 51 (12), 32 (45) and 28 (100); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 6.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 7.22$ (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.47 (m, 1 H, ArH) 7.52-7.79 (m, $8 \mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}$ and ArH) and 8.68 ($\mathrm{m}, 1 \mathrm{H}, 5-\mathrm{H}$).

1-Methyl-1,2,4-triazolo[4,3-a]pyridinium-3-phenylaminide 6b. Orange-red prisms (Method A, 61\%; Method B, 58\%), m.p. ${ }^{190-192}{ }^{\circ} \mathrm{C}$ (PhMe) (Found: C, 69.6; H, 5.45; N, 25.0. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4}$ requires $\mathrm{C}, 69.5 ; \mathrm{H}, 5.4 ; \mathrm{N}, 24.8 \%$; $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1601,1580$ and $1515 ; m / z 224(100)\left(\mathrm{M}^{+}\right), 223$ (48), 107 (8), 79 (6), 78 (25) and 28 (13); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 3.85$ (s, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.87(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 7.11-7.23$ ($\mathrm{m}, 3 \mathrm{H}, 8-\mathrm{H}$ and ArH), $7.44-7.53(\mathrm{~m}, 3 \mathrm{H}, 7-\mathrm{H}$ and ArH) and 8.46 ($\mathrm{m}, 1 \mathrm{H}, 5-\mathrm{H}$).

1,5,7-Trimethyl-1,2,4-triazolo[4,3-a pyridinium-3-phenylaminide 6 cc . Orange-red needles $\left(80 \%\right.$), m.p. $180-182^{\circ} \mathrm{C}$ (PhMe) (Found: C, 71.4; H, 6.4; N, 22.2. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4}$ requires C, 71.4; H, 6.4; $\mathrm{N}, 22.15 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1608,1582$ and $1510 ; m / z$ 252 (100) (M+), 251 (31), 236 (21), 136 (16), 118 (21), 108 (6), 107 (14), 106 (8) and 91 (9); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 2.21$ (d, $3 \mathrm{H}, J 0.9$, 7-Me), 3.11 (br s, $3 \mathrm{H}, 5-\mathrm{Me}$), 3.59 (s, $3 \mathrm{H}, \mathrm{NMe}$), 6.13 (br s, 1 H , 6-H), 6.61 (br s, $1 \mathrm{H}, 8-\mathrm{H}$) and 6.68-7.39 (m, $5 \mathrm{H}, \mathrm{ArH}$).

1-Benzyl-5,7-dimethyl-1,2,4-triazolo[4,3-a $]$ pyridinium-3phenylaminide 6 d. Orange-red needles (82%), m.p. $230-231^{\circ} \mathrm{C}$ (PhMe).

5,7-Dimethyl-1-propyl-1,2,4-triazolo[4,3-a pyridinium-3phenylaminide 6 e . Orange-red needles (83%), m.p. $158-159^{\circ} \mathrm{C}$ ($\mathrm{Pr}^{\mathrm{i} O H}$).

5,7-Dimethyl-1-pentyl-1,2,4-triazolo[4,3-a] pyridinium-3phenylaminide 6f. Yellow needles (87%), m.p. $78-79.5^{\circ} \mathrm{C}$ (cyclohexane).

Preparation of Benzaldehyde N-Substituted 4,6-Dimethyl-pyrimidin-2-ylhydrazones 8 p and $\mathbf{8 q}$.-A solution of 2-benzyl-idenehydrazino-4,6-dimethylpyrimidine ${ }^{1}(1.5 \mathrm{~g}, 6.6 \mathrm{mmol})$ in tetrahydrofuran ($20 \mathrm{~cm}^{3}$) was added dropwise over 10 min to a stirred mixture of sodium hydride (50% dispersion in oil; 0.2 g , 6.6 mmol) in tetrahydrofuran ($10 \mathrm{~cm}^{3}$) at room temperature. The resulting mixture was stirred for 10 min and then cooled to $5^{\circ} \mathrm{C}$. A solution of 3,5 -dinitrobenzylchloride ($1.43 \mathrm{~g}, 6.6 \mathrm{mmol}$)
in tetrahydrofuran $\left(10 \mathrm{~cm}^{3}\right)$ was added over 15 min maintaining a temperature $<10^{\circ} \mathrm{C}$. The resulting black solution was allowed to warm to room temperature and then diluted with water $\left(50 \mathrm{~cm}^{3}\right)$. The precipitate was filtered off and washed with ether to give the crude product as an orange solid ($2.4 \mathrm{~g}, 90 \%$). Recrystallization of the crude product from ethyl acetatehexane gave benzaldehyde (4,6-dimethylpyrimidin-2-yl)(3,5-dinitrobenzyl) hydrazone 8 q as orange needles $(2.19 \mathrm{~g}, 82 \%)$, m.p. 117-119 ${ }^{\circ} \mathrm{C}$ (Found: C, 59.1; H, 4.6; N, 20.7. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires C, $59.1 ; \mathrm{H}, 4.45 ; \mathrm{N}, 20.7 \%$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1582$, 1540 and 1345; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 2.41 \cdot\left(\mathrm{~s}, 6 \mathrm{H}, 4-\mathrm{CH}_{3}\right.$ and $6-$ CH_{3}), 5.96 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$), $6.81(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.26-7.77$ (m , $5 \mathrm{H}, \mathrm{ArH}), 8.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 8.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$ and $8.83(\mathrm{t}, \mathrm{l}$ H, J 3.0, ArH); $m / z 406(23 \%)\left(\mathrm{M}^{+}\right), 329(37), 303(56), 225$ (36), 192 (27), 136 (29), 108 (100), 89 (27), 77 (21) and 67 (35).

The above procedure was used to prepare benzaldehyde (4,6-dimethylpyrimidin-2-yl)(4-nitrobenzyl)hydrazone $8 \mathrm{p}(2.1 \mathrm{~g}$, 85%), m.p. ${ }^{163-164.5^{\circ} \mathrm{C}}$ [see Suppl. Pub. 56922 (11 pp.),* Tables 7 and 8].

Preparation of Hydrazinopyrimidines.-Hydrazinopyrimidines $8\left[\mathrm{R}=\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{NH}_{2} ; \mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{5} \mathrm{H}_{11}\right]$ were prepared as previously described. ${ }^{1}$

4,6-Dimethyl-2-[1-(3,5-dinitrobenzyl)hydrazino] pyrimidine 8r. A stirred solution of benzaldehyde 4,6-dimethylpyrimidin-2-$\mathrm{yl})(3,5$-dinitrobenzyl)hydrazone $8 \mathrm{q}(\mathbf{2 . 0 3} \mathrm{g}, 5 \mathrm{mmol})$ in 2 mol dm^{-3} aqueous hydrochloric acid ($60 \mathrm{~cm}^{3}$) was steam distilled for 1 h and then cooled to room temperature and basified with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous sodium hydroxide. The resulting mixture was extracted with dichloromethane ($3 \times 50 \mathrm{~cm}^{3}$) and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The crude product was recrystallised from isopropyl alcohol to give the title compound 8 r as orange needles (1.43g, 90\%), m.p. $119-121^{\circ} \mathrm{C}$ (Found: C, 49.2; H, 4.55; N, 26.3. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires $\mathrm{C}, 49.05 ; \mathrm{H}, 4.45 ; \mathrm{N}, 26.4 \%$); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3320(\mathrm{NH}), 3100(\mathrm{NH})$ and $1340\left(\mathrm{NO}_{2}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.34\left(\mathrm{~d}, 6 \mathrm{H}, J 0.3,4-\mathrm{CH}_{3}\right.$ and $\left.6-\mathrm{CH}_{3}\right), 4.37-4.51$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 5.17 (s, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 6.42$ (s, $1 \mathrm{H}, 5-\mathrm{H}$), 8.61 (d, $2 \mathrm{H}, J 2.1, \mathrm{ArH}$) and $8.92(\mathrm{t}, 1 \mathrm{H}, J 2.1, \mathrm{ArH}) ; m / z 318$ (38\%) (M^{+}), 302 (28), 138 (10), 137 (78), 109 (100), 108 (28), 107 (10), 93 (14), 82 (13) and 67 (18).

The above procedure was used to prepare 4,6-dimethyl-2-[1-(4-nitrobenzyl)hydrazino]pyrimidine $8 \mathbf{~}\left(90 \%\right.$), m.p. $96-98^{\circ} \mathrm{C}$ [see Suppl. Pub. 56922 (11 pp .), ${ }^{*}$ Tables 7 and 8].

General Method for the Preparation of 1-Substituted 1-(4,6-Dimethylpyrimidin-2-yl)thiosemicarbazides 8a-i.-A solution of the appropriate hydrazinopyrimidine derivative (10 mmol) and the isothiocyanate (10 mmol) in diethyl ether was stirred at room temperature for 18 h . The product was precipiated to give, for example 1-(4,6-dimethylpyrimidin-2-yl)-1-methyl-4-phenylthiosemicarbazide 8d as colourless needles ($2.35 \mathrm{~g}, 82 \%$), m.p. $143-144{ }^{\circ} \mathrm{C}$ (EtOH) (Found: C, 58.5; H, 6.0; N, 24.4. $\mathrm{C}_{14} \mathrm{H}_{17} 7^{-}$ $\mathrm{N}_{5} \mathrm{~S}$ requires $\mathrm{C}, 58.5 ; \mathrm{H}, 6.0 ; \mathrm{N}, 24.5 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3340(\mathrm{NH}), 2990,1588,1520,1360,1340$ and $690 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ 2.37 ($\mathrm{s}, 6 \mathrm{H}, 4-\mathrm{CH}_{3}$ and $6-\mathrm{CH}_{3}$), 3.39 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 6.66 (s, $1 \mathrm{H}, 5-\mathrm{H}), 6.85\left(\mathrm{q}, 1 \mathrm{H}, J 5, \mathrm{NH} \mathrm{CH}_{3}\right), 7.12-7.52(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$ and $8.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; m / z(\mathrm{Cl}) 288(24 \%)(\mathrm{M}+1)^{+}, 255(17)$, 254 (99), 153 (72), 152 (93), 136 (100), 135 (88), 109 (35), 108 (41) and 107 (20).

The above procedure was used to give the following compounds (form, yield, m.p. and solvent for recrystallisation

[^2]quoted): 8a, colourless needles, $91,150-151^{\circ} \mathrm{C}, \mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$; $\mathbf{8 b}$, colourless needles, $93,188-189^{\circ} \mathrm{C} ; \mathbf{8 c}$, colourless needles, 40 , $158-159^{\circ} \mathrm{C} ; 8 \mathrm{e}$, colourless needles, $86,171^{\circ} \mathrm{C}$ (decomp.), EtOAc; 8f, colourless prisms, $70,112-114^{\circ} \mathrm{C} ; \mathbf{8 g}$, colourless prisms, $78,78^{\circ} \mathrm{C}$, EtOAc-hexane; $\mathbf{8 h}$, orange-yellow needles, $83,138-140^{\circ} \mathrm{C}$, EtOAc-hexane; 8i, orange needles, 77, 181$182^{\circ} \mathrm{C}$, EtOAc-hexane; analytical and spectral data for compounds ($8 \mathrm{a}, \mathrm{b}$ and $8 \mathrm{e}-\mathrm{i}$) are given in Suppl. Pub. 56922 (11 pp .),* Tables 7 and 8.

General Method for the Preparation of S-Methyl Pyrimidinylthiosemicarbazide Hydroiodic Salts 8i-o.-A solution of the thiosemicarbazide (10 mmol) and iodomethane (15 mmol) in tetrahydrofuran ($40 \mathrm{~cm}^{3}$) was stirred at room temperature for 48 h . The mixture was evaporated under reduced pressure and the crude product recrystallised from the appropriate solvent to give, for example, S-methyl-1-(4,6-dimethylpyrimidin-2-yl)-1-methyl-4-phenylthiosemicarbazide hydroiodide $8 \mathrm{j}(2.6 \mathrm{~g}, 85 \%)$, m.p. ${ }^{168-169}{ }^{\circ} \mathrm{C}$ [MeOH-Et ${ }_{2} \mathrm{O}$] (Found: C, $42.1 ; \mathrm{H}, 4.7 ; \mathrm{N}$, 6.05. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{IN}_{5} \mathrm{~S}, \mathrm{C}, 41.95 ; \mathrm{H}, 4.7 ; \mathrm{N}, 16.3 \%$; $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ 1580, 1370, 1335, 1290, 738 and $691 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 2.45(\mathrm{~s}, 6 \mathrm{H}, 4-$ CH_{3} and $6-\mathrm{CH}_{3}$), $2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 3.50\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$), 6.81 (s, $1 \mathrm{H}, 5-\mathrm{H}$) and 7.48-7.75 (m, $5 \mathrm{H}, \mathrm{ArH}$); m / z (CI) 302 (77) (M + 1-HI) ${ }^{+}, 258$ (24), 256 (65), 255 (20), 254 (100), 253 (15), 240 (10), 138 (32) and 136 (11).

Also prepared were the following compounds (yield, m.p. and solvent for recrystallisation quoted): 8k, $90,181-182^{\circ} \mathrm{C}$, $\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O} ; 80,91,181-182^{\circ} \mathrm{C}$, EtOH-Et ${ }_{2} \mathrm{O}$ [see Suppl. Pub. 56922 (11 pp .),* Tables 7 and 8].

The methiodides $81-\mathrm{n}$ were not obtained analytically pure and were transformed directly into the enamines 11.

General Procedure for 1,5,7-Trimethyl-[1,2,4]triazolo[4,3-a]-pyrimidinium-3-aminides 7a-c.-A solution of the appropriate thiosemicarbazide $8 \mathbf{8 a - c}$ (5 mmol) and dicyclohexylcarbodiimide (7.5 mmol) in acetone was stirred at room temperature for 24 h and the precipitated product filtered off. The following pure compounds were isolated.

1,5,7-Trimethyl-1,2,4-triazolo[4,3-a pyrimidinium-3-ethoxycarbonylaminide 7a. Yellow solid ($0.82 \mathrm{~g}, 66 \%$), m.p. $182-183{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 53.05; H, 6.1; N, 28.1. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires C, $53.0 ; \mathrm{H}, 6.07 ; \mathrm{N}, 28.10 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3040$, 1635, 1555 and 1510; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.28(\mathrm{t}, 3 \mathrm{H}, J 7.0$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.63 (s, $3 \mathrm{H}, 7-\mathrm{CH}_{3}$), 3.03 (d, $3 \mathrm{H}, \mathrm{J} 1.0,5-\mathrm{CH}_{3}$), 4.10 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.12\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 7.0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $6.98(\mathrm{~d}, 1 \mathrm{H}$, $J 1.0,6-\mathrm{H})$.

1,5,7-Trimethyl-1,2,4-triazolo[4,3-a]pyrimidinium-3-benzoylaminide 7b. Yellow solid ($0.89 \mathrm{~g}, 63 \%$), m.p. $208-209^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 63.9 ; \mathrm{H}, 5.4 ; \mathrm{N}, 25.0 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ requires C, 64.04; H, 5.37; N, 24.90\%); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3040,1640$, 1600 and $1560 ; \delta_{\mathrm{H}}\left(1: 1, \mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CD}_{3} \mathrm{OD}\right) 2.53$ (s, $3 \mathrm{H}, 7-\mathrm{CH}_{3}$), $3.10\left(\mathrm{~d}, 3 \mathrm{H}, J 1.0,5 \mathrm{CH}_{3}\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.73(\mathrm{~d}, 1 \mathrm{H}$, $J 1.0,6-\mathrm{H})$ and 7.37 and $8.01(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$.

1,5,7-Trimethyl-1,2,4-triazolo[4,3-a] pyrimidinium-3-benzyloxycarbonylaminide 7 c . Yellow solid ($1.05 \mathrm{~g}, 68 \%$), m.p. 177$178^{\circ} \mathrm{C}$ (decomp.) (Found: C, 61.7; H, 5.6; N, 22.4. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires C, $61.72 ; \mathrm{H}, 5.50 ; \mathrm{N}, 22.50 \%$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3040$, 1635 and $1510 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 2.49\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right), 3.0(\mathrm{~d}, 3 \mathrm{H}, J$ $1.0,5-\mathrm{CH}_{3}$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$), $5.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.50(\mathrm{~d}, 1 \mathrm{H}$, $J 1.0,6-\mathrm{H})$ and $7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$.

General Method for the Preparation of 1-(4,6-Dimethyl-2-pyridyl)-2-[N,N-bis(2,5-disubstituted-1,2,4-triazol-3-yl)]aminopropenes 11a-f.-A solution of the 1 -(pyrimidin- 2 -yl)-1,4-disubstituted S-methyl-thiosemicarbazide hydroiodide $\mathbf{8 j - 0}$ (0.5 mmol) in chloroform ($40 \mathrm{~cm}^{3}$) was washed with saturated aqueous sodium hydrogen carbonate ($2 \times 10 \mathrm{~cm}^{3}$) and water $\left(10 \mathrm{~cm}^{3}\right)$. The resulting red solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$
and evaporated under reduced pressure to give the intermediate thioether as an orange oil. The oil was dissolved in toluene (50 cm^{3}) and the solution heated at reflux for $6-48 \mathrm{~h}$ and then cooled to room temperature. The crude product was either filtered off or obtained by evaporation of the reaction mixture under reduced pressure. The crude product was purified by either recrystallisation or by chromatography on silica gel. Two such compounds were as follows.

1-(4,6-Dimethyl-2-pyridyl)-2-[N,N-bis-(2-methyl-5-phenyl-amino-1,2,4-triazol-3-yl)] aminopropene 11a. Colourless needles from toluene ($1.03 \mathrm{~g}, 82 \%$), m.p. 227-228 ${ }^{\circ} \mathrm{C}$ (Found: C, $66.4 ; \mathrm{H}$, $6.0 ; \mathrm{N}, 27.65 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{10}$ requires $\mathrm{C}, 66.4 ; \mathrm{H}, 6.0 ; \mathrm{N}, 27.65 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3405(\mathrm{NH}), 1673$ (enamine $\mathrm{C}=\mathrm{C}$), 1610, 1560 and $1540 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.02$ (s, 3 H , allylic $\left.\mathrm{CH}_{3}\right)$, 2.13 (s, 3 H , pyridyl $4-\mathrm{CH}_{3}$), $2.25\left(\mathrm{~s}, 3 \mathrm{H}\right.$, pyridyl $6-\mathrm{CH}_{3}$), $3.47(\mathrm{~s}, 6 \mathrm{H}$, $2 \times \mathrm{NCH}_{3}$), 6.36 (s, 1 H , olefinic H), 6.78 (s, l H, pyridyl $5-\mathrm{H}$), 6.78-7.40 (m, $10 \mathrm{H}, \mathrm{ArH}$), $6.94(\mathrm{~s}, 1 \mathrm{H}$, pyridyl 3-H) and 9.17 (br s, $2 \mathrm{H}, \mathrm{NH}$); $m / z 506$ (24%) (M^{++}), 360 (16), 146 (18), 145 (33), 144 (21), 83 (100), 82 (20), 49 (28), 48 (35), 47 (67) and 28 (95).

1-(4,6-Dimethylpyrid-2-yl)-2-\{ $\mathrm{N}, \mathrm{N}-$ bis [2-(3,5-dinitrobenzyl)-5-methylamino-1,2,4-triazol-3-yl]\}aminopropene 11f. Orange plates from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($98: 2$) ($1.09 \mathrm{~g}, 61 \%$), m.p. $128-$ $130^{\circ} \mathrm{C}$ (Found: C, 50.7; H, 4.3; N, 26.9. $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{14} \mathrm{O}_{8}$ requires C, $50.4 ; \mathrm{H}, 4.3 ; \mathrm{N}, 27.4$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3290(\mathrm{NH}), 1598$, 1535, 1340 and $725 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.93$ (d, $3 \mathrm{H}, J 0.8$, allylic CH_{3}), 2.13 (s, 3 H , pyridyl 4- CH_{3}), 2.15 (s, 3 H , pyridyl 6- CH_{3}), $2.79\left(\mathrm{~d}, 6 \mathrm{H}, J 5.4,2 \times \mathrm{NHCH}_{3}\right), 4.17(\mathrm{q}, 2 \mathrm{H}, J 5.4,2 \times \mathrm{NH})$, $5.27\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{NCH}_{2}\right), 5.97(\mathrm{~d}, 1 \mathrm{H}, J 0.9$, olefinic H), $6.42(\mathrm{~s}$, 1 H , pyridyl $5-\mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}$, pyridyl 3-H), $8.91(\mathrm{t}, 2 \mathrm{H}, \mathrm{J} 2$, ArH) and 8.56 (d, $4 \mathrm{H}, J 2, \mathrm{ArH}) ; m / z 714\left(70 \%\right.$ (M^{++}) 698 (16), $697(40), 569(10), 422(27), 304(15), 188(16), 147(36), 146$ (100), 145 (19) and 131 (32).

The following compounds were also prepared (form, yield, m.p. and solvent for recrystallisation quoted): 11b, colourless needles, $63 \%, 190-192^{\circ} \mathrm{C}$, EtOAc; 11c, yellow oil, 61%, -, -; 11d, yellow oil, 55%, -, -; 11e, orange needles, 60%, 203$205{ }^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane [see Suppl. Pub. 56922 (11 pp .), ${ }^{*}$ Tables 9 and 10].

Acidic Hydrolysis of 1-(4,6-Dimethyl-2-pyridyl) $-2-[\mathrm{N}, \mathrm{N}-$ bis -(2-methyl-5-phenylamino-1,2,4-triazol-3-yl)]aminopropene 11a.-1-(4,6-Dimethyl-2-pyridyl)-2-[N, N-bis(2-methyl-5-phenylamino-1,2,4-triazol-3-yl)]aminopropene $11 \mathrm{a}(1.3 \mathrm{~g}, 2.6$ mmol) was suspended in aqueous hydrochloric acid (2 mol $\mathrm{dm}^{-3} ; 40 \mathrm{~cm}^{3}$) and the stirred mixtured heated to $80^{\circ} \mathrm{C}$. Complete dissolution was briefly obtained before precipitation of a solid occurred. This mixture was maintained at $80^{\circ} \mathrm{C}$ for 30 min and then allowed to cool to room temperature. The precipitate was washed with water and then suspended in chloroform ($75 \mathrm{~cm}^{3}$). To this suspension was added saturated aqueous sodium hydrogen carbonate ($50 \mathrm{~cm}^{3}$) and the resulting mixture stirred vigorously for 10 min ; the layers were then separated. The organic layer was dried $\left(\mathrm{Na}_{2} \mathbf{S O}_{4}\right)$ and evaporated under reduced pressure and the product recrystallised from ethanol to give N, N-bis(1-methyl-3-phenylamino-1,2,4-triazol-5$y l)$ amine 9 as off-white needles ($0.65 \mathrm{~g}, 70 \%$), m.p. $191-192{ }^{\circ} \mathrm{C}$ (Found: C, 59.7; H, 5.35; N, 34.8. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{9}$ requires C, 59.8; H, 5.3; N, 34.9\%); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 3150,1640,1620$ and 735; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.60\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NHCH}_{3}\right), 6.82(\mathrm{t}, 2 \mathrm{H}$, ArH), $7.21(\mathrm{t}, 4 \mathrm{H}, \mathrm{ArH}$), 7.48 (d, $4 \mathrm{H}, \mathrm{ArH}$) and 9.66 (br s, 1 H , NH); m / z (FAB) $361\left(\mathbf{M}^{+}\right.$). The aqueous acidic filtrate was evaporated under reduced pressure. The residue was partitioned

* For full details of the British Library Supplementary Publication
Deposition Scheme see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. I. 1993, Issue 1.
between dichloromethane ($50 \mathrm{~cm}^{3}$) and saturated aqueous sodium hydrogen carbonate ($5 \mathrm{~cm}^{3}$) and the mixture stirred for 10 min . The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to leave a red oil. The oil was chromatographed on silica gel using dichloromethane-methanol (98:2) as eluent to give 1-(4,6-dimethyl-2-pyridyl)propan-2one 10 as a yellow liquid ($0.4 \mathrm{~g}, 96 \%$); $v_{\text {max }}$ (liq. film) $/ \mathrm{cm}^{-1} 1710$ $(\mathrm{C}=0), 1610$ and $1550 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 2.12\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right)$, $2.27\left(\mathrm{~s}, 3 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.89$ (s, $1 \mathrm{H}, 5-\mathrm{H})$ and $6.92(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; m / z 163.0985\left(14 \%, \mathrm{M}^{+}\right.$ requires 163.0997), 121 (100), 106 (10), 91 (6) and 79 (11).

Reaction of 1-(4,6-Dimethylpyrimidin-2-yl)-1-methyl-4-phenylthiosemicarbazide 8d with dicyclohexylcarbodiimide: Preparation of the Pyridinium Betaine 14a.-Dicyclohexylcarbodiimide $(1.55 \mathrm{~g}, 7.5 \mathrm{mmol})$ was added to a stirred solution of $1-(4,6-$ dimethylpyrimidin-2-yl)-1-methyl-4-phenylthiosemicarbazide $8 \mathrm{~d}(1.44 \mathrm{~g}, 5 \mathrm{mmol})$ in dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ at room temperature. The colourless solution immediately changed to deep red and this solution was stirred at room temperature for 3 days. TLC $\left[\mathrm{SiO}_{2}\right.$; chloroform-methanol (9:1)] showed the formation of a major orange-red product ($R_{\mathrm{f}} 0.25 \rightarrow 0.4$). The mixture was evaporated under reduced pressure and the residue chromatographed on silica gel using chloroform-methanol ($98: 2$) as eluent. The fractions containing the orange-red product were combined and evaporated under reduced pressure to give a red amorphous powder later recognised as the pyridinium betaine $14 \mathrm{a}\left(0.70 \mathrm{~g}, 55 \%\right.$), m.p. $126^{\circ} \mathrm{C}$ (decomp.); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3425(\mathrm{NH}), 1650,1595,1568,1465,1432$, 1280 and 1240; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.11$ (br s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.21 (br s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$), 3.69 (s, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.20(\mathrm{brs}, 1 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~m}, 1 \mathrm{H}$, ArH), $7.13-7.52\left[\mathrm{~m}, 9 \mathrm{H}, 8 \times \mathrm{ArH}\right.$ and 1 exchangeable ($\mathrm{D}_{2} \mathrm{O}$) proton], 7.72 (s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable) and 8.92 ($\mathrm{s}, 1 \mathrm{H}$); m / z $506(89 \%)\left(\mathbf{M}^{+}\right), 364(64), 318(35), 293(100), 253(28), 215(36)$, 214 (37), 146 (57), 131 (31), 70 (31) and 28 (44). This compound was not purified to analytical standard.

Reaction of 3-Methylthio-1,5,7-trimethyl-1,2,4-triazolo-[4,3-a]pyrimidinium Iodide 12b with Diazabicyclo[5.4.0]undec-7-ene (DBU): Preparation of the Pyridinium Betaine 14b and Conversion into the Maleate Salt.-DBU $(1.52 \mathrm{~g}, 10 \mathrm{mmol})$ was added to a stirred mixture of 3-methylthio-1,5,7-trimethyl-1, 2,4-triazolo[4,3-a]pyrimidinium iodide ($3.36 \mathrm{~g}, 10 \mathrm{mmol}$) in tetrahydrofuran ($400 \mathrm{~cm}^{3}$) at room temperature. The resultant red mixture was stirred for 18 h and then evaporated under reduced pressure. The residue was chromatographed on silica gel using EtOAc as eluent to give the pyridinium betaine 14b as a red solid ($0.9 \mathrm{~g}, 43 \%$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1648$ and $1262 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $1.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{SCH}_{3}$), $2.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.69(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.07(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H})$ and $8.72(\mathrm{~s}, 1 \mathrm{H}) ; m / z 416$ (81%) ($\mathrm{M}^{+}+$), 273 (26), 271 (74), 195 (16), 170 (17), 169 (16), 146 (100), 131 (34) and 43 (19). This compound was not further purified to analytical standard, but was converted into a maleate salt as follows. A sample of the betaine $14 \mathrm{~b}(100 \mathrm{mg})$ was dissolved in dichloromethane ($3 \mathrm{~cm}^{3}$) and to this solution was added maleic acid (1 mol equiv.). The resultant solution was allowed to evaporate slowly over a period of a few days to give the crystalline maleate salt of the pyridinium betaine $14 \mathrm{~b}, \mathrm{~m} . \mathrm{p}$. $125-128{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3600-2700$ (br), 1700, 1635, 1580 , $1550,1515,1480,1440,1360,1290,1250,1200,1160 \mathrm{~m}, 1000 \mathrm{br}$ and 870 .

Thermolysis of the Pyridinium Betaine 14b.-A sample of the pyridinium betaine 14 b ($240 \mathrm{mg}, 0.57 \mathrm{mmol}$) was heated in toluene ($20 \mathrm{~cm}^{3}$) under reflux for 1.5 h . TLC analysis $\left[\mathrm{SiO}_{2}\right.$, EtOAc-MeOH (4:1)] showed a major product ($R_{f} 0.6$), no
starting material ($R_{\mathrm{f}} 0.4$) being observed. The solution was cooled to room temperature and evaporated under reduced pressure. The residue was chromatographed on silica gel using EtOAc-MeOH (95:5) as eluent to give 1-(4,6-dimethyl-2-pyridyl)-2-[N, N-bis(2-methyl-5-methylthio-1,2,4-triazol-3-yl)aminopropene 11 g as a solid ($170 \mathrm{mg}, 71 \%$). An analytical sample was obtained by recrystallisation from EtOAc-toluene, m.p. $139-141^{\circ} \mathrm{C}$ (Found: C, $51.8 ; \mathrm{H}, 5.8 ; \mathrm{N}, 26.95 \%$. $\mathrm{C}_{12} \mathrm{H}_{24}{ }^{-}$ $\mathrm{N}_{8} \mathrm{~S}_{2}$ requires C, 51.9 ; H,5.8; N, 26.95\%); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ $1605,1552,1495,1290,765$ and $720 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 2.03(\mathrm{~d}, J$ 1, CH_{3}), 2.21 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.44(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \times \mathrm{NCH}_{3}\right), 3.50\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{NCH}_{3}\right), 6.29(\mathrm{~d}, 1 \mathrm{H}, J 1$ olefinic $\mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}$, pyridyl H) and $6.80(\mathrm{~s}, 1 \mathrm{H}$, pyridyl H); $m / z 416$ $(66 \%)\left(\mathrm{M}^{+}\right) 273$ (25), 248 (48), 170 (16), 146 (100), 145 (18), 131 (32) and 43 (22).

3-Amino-1,5,7-trimethyl-1,2,4-triazolo[4,3-a]pyrimidinium Hydrobromide 7d.-1,5,7-Trimethyl-1,2,4-triazolo[4,3-a]pyri-midinium-3-benzyloxycarbonylaminide $7 \mathrm{c}(0.62 \mathrm{~g}, 2 \mathrm{mmol})$ was dissolved in glacial acetic acid ($2 \mathrm{~cm}^{3}$) and the solution was treated with a solution of hydrogen bromide in acetic acid (35%; $2 \mathrm{~cm}^{3}$). The mixture was stirred at room temperature for 24 h . TLC $\left(\mathrm{SiO}_{2} ; 9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ showed complete reaction. The mixture was diluted with diethyl ether and the precipitate filtered off to afford the title compound as pale yellow plates ($0.45 \mathrm{~g}, 87 \%$), m.p. $283^{\circ} \mathrm{C}$ (decomp.) (Found: C, $36.95 ; \mathrm{H}, 4.7 ; \mathrm{N}$, 27.0; $\mathrm{Br}, 31.0 . \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{BrN}_{5}$ requires C, 37.22; H, 4.69; N, 27.13; $\mathrm{Br}, 30.96 \%$); $v_{\max }$ (Nujol)/ $/ \mathrm{cm}^{-1} 3280,3220,3180,1675,1645$ and $1605 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 2.69\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right), 3.01(\mathrm{~d}, 3 \mathrm{H}, J 1.0$, $5-\mathrm{CH}_{3}$), $3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 1.0,6-\mathrm{H})$.

Attempted Preparation of 1,5,7-Trimethyl-1,2,4-triazolo[4,3a] pyrimidinium-3-aminide 7e.-3-Amino,1,5,7-trimethyl-1,2,4triazolo $[4,3-a$] pyrimidinium hydrobromide $7 \mathrm{~d}(0.5 \mathrm{~g}, 1.9 \mathrm{mmol})$ was suspended in dichloromethane ($50 \mathrm{~cm}^{3}$) and gaseous ammonia was passed into the mixture at room temperature for 2 h . The mixture was stirred overnight and the ammonium bromide filtered off. The filtrate was evaporated to give the triazole derivative 17a as yellow needles $(0.3 \mathrm{~g}, 80 \%$), m.p. 184 $186{ }^{\circ} \mathrm{C}$ (from toluene) (Found: C, 49.5; H, 7.35; N, 43.15. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{6}$ requires C, $\left.49.45 ; \mathrm{H}, 7.25 ; \mathrm{N}, 43.25 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ 1.97 (s, $3 \mathrm{H}, \mathrm{CMe}$), 2.06 (s, $3 \mathrm{H}, \mathrm{CMe}$), 3.46 (s, $3 \mathrm{H}, \mathrm{NMe}$) and 4.77 (br s, $1 \mathrm{H}, \mathrm{CH}=$).
X-Ray Crystal Structure Determination of the Maleate Salt of the Pyridinium Betaine 14b.-Crystal data. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}, M=$ 532.6, orange prisms, triclinic, space group $\bar{P} \mathrm{~T}$ (No. 2), $a=$ 11.4565 (25), $b=12.384$ (4), $c=12.052$ (4) $\AA, \alpha=114.96$ (3), $\beta=107.642$ (19),$\gamma=105.78$ (3) ${ }^{\circ}, U=1309.6 \AA^{3}, Z=$ $2, D_{\mathrm{c}}=1.351 \mathrm{~g} \mathrm{~cm}^{-3}, F(000) 560, \mu(\mathrm{Mo}-\mathrm{K} \alpha) 2.36 \mathrm{~cm}^{-1}$.

Data collection. The intensity data were collected on an Enraf-Nonius CAD4 diffractometer over the hemisphere (θ range: $\left.1.50-25.0^{\circ} ; h:-13-+13, k: 0-14, l:-14-+14\right)$ using graphite monochromated Mo-K α X-radiation ($\lambda 0.710693 \AA$) and $\omega-2 \theta$ scanning. Of the 4609 unique data measured, 3128 had $I>2 \sigma(I)$ and were used in subsequent structural solution and refinement. The data were corrected for Lorentz and polarisation effects, but not for absorption.
Structure solution. The approximate locations of the nonhydrogen atoms were determined by direct methods (SHELXS-
86). ${ }^{13}$ The structure was refined by full-matrix least squares methods (SHELX76) ${ }^{14}$ using anisotropic temperature factors for all the non-hydrogen atoms. The positions of all the hydrogen atoms, except the carboxylate hydrogen, were located from a series of difference Fourier maps. The located hydrogen atoms were included in the refinement process at idealised positions ($\mathrm{d}_{\mathrm{C}-\mathrm{H}} 0.95 \AA$) with fixed isotropic temperature factors ($U_{\text {iso }} 0.10 \AA^{2}$), except for the amino hydrogen atom $\mathrm{H}(2 \mathrm{~N})$ whose positional parameters were allowed to refine as normal. At convergence, the discrepancy factors R and R_{w} were 0.049 and 0.083 respectively. The weighting scheme, $w^{-1}=\left[\sigma^{2}-\right.$ $\left.(F)+0.0104(F)^{2}\right]$ was found to give satisfactory analyses of variance. The final difference Fourier map was essentially featureless (general noise level less that $\pm 0.14 \mathrm{e} \AA^{-3}$), apart from two peaks (ca. $0.34,0.25 \mathrm{e}^{-3}$) in the region around the disordered maleate ion.

Incidental crystallographic calculations and compilation of tables were carried using the computer program CALC. ${ }^{15}$ Lists of refined thermal parameters and hydrogen atom coordinates, are available from the Cambridge Crystallographic Data Centre.*

* For full details of the CCDC deposition scheme see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 1, 1993, Issue 1.

References

1 H. Marley, K. J. McCullough, P. N. Preston and S. H. B. Wright, J. Chem. Soc., Perkin Trans. I, 1988, 351.
2 H. Marley, K. J. McCullough, P. N. Preston and S. H. B. Wright, J. Chem. Soc., Chem. Commun., 1987, 112.
3 H. Marley, P. N. Preston and S. H. B. Wright, J. Chem. Soc., Perkin Trans. I, 1989, 1727.
4 H. Marley, K. J. McCullough, P. N. Preston and S. H. B. Wright, J. Chem. Soc., Chem. Commun., 1988, 506.
5 R. J. Grout, T. J. King and M. W. Partridge, J. Chem. Soc., Chem. Commun., 1971, 898.
6 G. Palazzo and L. Baiocchi, Ann. Chim. (Rome), 1965, 55, 9357.
7 (a) K. T. Potts, H. R. Burton and J. Bhattacharyya, J. Org. Chem., 1966, 31, 251; (b) R. N. Butler, J. P. Duffy, D. Cunningham, P. McArdle and L. A. Burke, J. Chem. Soc., Perkin Trans. I, 1992, 147.
8 A. Kalman, L. Parkanyi and J. Reiter, J. Mol. Struct., 1984, 118, 293; B. Ribar, S. Stankovic, G. Argay, A. Kalman and F. Koczo, Acta Crystallogr., Sect. C, 1987, 43, 1712.
9 E. E. Schweizer and S. Evans, J. Org. Chem., 1978, 43, 4328.
10 R. Grashey in 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley, New York, 1984, vol. 1, p. 757.
11 G. Darnault, M. Saquet and A. Thuillier, Chem. Ind. (London), 1983, 391.

12 A. Gelléri, A. Messmer, S. Nagy and L. Radics, Tetrahedron Lett., 1980, 21, 663.
13 G. M. Sheldrick, SHELXS86, University of Göttingen, Germany, 1986.

14 G. M. Sheldrick, SHELX76, University of Cambridge, England, 1976.
15 R. O. Gould and P. J. Taylor, CALC, University of Edinburgh, Scotland, 1983
16 'Ball \& Stick', version 3.0, Cherwell Scientific, Oxford, England.
17 W. D. S. Motherwell, PLUTO, University of Cambridge, England, 1976.

Paper 2/05585F
Received 20th October 1992
Accepted 18th November 1992

[^0]: * For full details of the British Library Supplementary Publication Deposition Scheme see 'Instructions for Authors,' J. Chem. Soc., Perkin Trans. 1, 1993, Issue 1.

[^1]: * For full details of the British Library Supplementary Publication Deposition Scheme see 'Instructions for Author's, J. Chem. Soc., Perkin Trans. 1, 1993, Issue 1.

[^2]: * For full details of the British Library Supplementary Publication Deposition Scheme see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 1, 1993, Issue 1.

